Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.350
1.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673879

Reactive astrocytes are key players in HIV-associated neurocognitive disorders (HAND), and different types of reactive astrocytes play opposing roles in the neuropathologic progression of HAND. A recent study by our group found that gp120 mediates A1 astrocytes (neurotoxicity), which secrete proinflammatory factors and promote HAND disease progression. Here, by comparing the expression of A2 astrocyte (neuroprotective) markers in the brains of gp120 tgm mice and gp120+/α7nAChR-/- mice, we found that inhibition of alpha 7 nicotinic acetylcholine receptor (α7nAChR) promotes A2 astrocyte generation. Notably, kynurenine acid (KYNA) is an antagonist of α7nAChR, and is able to promote the formation of A2 astrocytes, the secretion of neurotrophic factors, and the enhancement of glutamate uptake through blocking the activation of α7nAChR/NF-κB signaling. In addition, learning, memory and mood disorders were significantly improved in gp120 tgm mice by intraperitoneal injection of kynurenine (KYN) and probenecid (PROB). Meanwhile, the number of A2 astrocytes in the mouse brain was significantly increased and glutamate toxicity was reduced. Taken together, KYNA was able to promote A2 astrocyte production and neurotrophic factor secretion, reduce glutamate toxicity, and ameliorate gp120-induced neuropathological deficits. These findings contribute to our understanding of the role that reactive astrocytes play in the development of HAND pathology and provide new evidence for the treatment of HAND via the tryptophan pathway.


Astrocytes , Glutamic Acid , Kynurenine , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Mice , Kynurenine/metabolism , Kynurenic Acid/metabolism , Kynurenic Acid/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp120/toxicity , Signal Transduction/drug effects , Mice, Knockout , Probenecid/pharmacology , Mice, Inbred C57BL , Male , Brain/metabolism , Brain/pathology , Brain/drug effects , NF-kappa B/metabolism
2.
Nat Commun ; 15(1): 1983, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438394

Multidrug resistance-associated protein 2 (MRP2/ABCC2) is a polyspecific efflux transporter of organic anions expressed in hepatocyte canalicular membranes. MRP2 dysfunction, in Dubin-Johnson syndrome or by off-target inhibition, for example by the uricosuric drug probenecid, elevates circulating bilirubin glucuronide and is a cause of jaundice. Here, we determine the cryo-EM structure of rat Mrp2 (rMrp2) in an autoinhibited state and in complex with probenecid. The autoinhibited state exhibits an unusual conformation for this class of transporter in which the regulatory domain is folded within the transmembrane domain cavity. In vitro phosphorylation, mass spectrometry and transport assays show that phosphorylation of the regulatory domain relieves this autoinhibition and enhances rMrp2 transport activity. The in vitro data is confirmed in human hepatocyte-like cells, in which inhibition of endogenous kinases also reduces human MRP2 transport activity. The drug-bound state reveals two probenecid binding sites that suggest a dynamic interplay with autoinhibition. Mapping of the Dubin-Johnson mutations onto the rodent structure indicates that many may interfere with the transition between conformational states.


Biological Assay , Probenecid , Humans , Animals , Rats , Phosphorylation , Probenecid/pharmacology , Binding Sites , Biological Transport , Membrane Transport Proteins , Multidrug Resistance-Associated Protein 2
3.
Viruses ; 16(1)2024 Jan 19.
Article En | MEDLINE | ID: mdl-38275962

Avian influenza (AI) viruses cause infection in birds and humans. Several H5N1 and H7N9 variants are highly pathogenic avian influenza (HPAI) viruses. H5N1 is a highly infectious bird virus infecting primarily poultry, but unlike other AIs, H5N1 also infects mammals and transmits to humans with a case fatality rate above 40%. Similarly, H7N9 can infect humans, with a case fatality rate of over 40%. Since 1996, there have been several HPAI outbreaks affecting humans, emphasizing the need for safe and effective antivirals. We show that probenecid potently inhibits H5N1 and H7N9 replication in prophylactically or therapeutically treated A549 cells and normal human broncho-epithelial (NHBE) cells, and H5N1 replication in VeroE6 cells and mice.


Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Mice , Influenza in Birds/drug therapy , Influenza in Birds/prevention & control , Influenza in Birds/epidemiology , Influenza A Virus, H7N9 Subtype/genetics , Probenecid , Birds , Mammals
4.
Anal Methods ; 16(4): 558-565, 2024 01 25.
Article En | MEDLINE | ID: mdl-38189092

Background: The optimization of antimicrobial dosing plays a crucial role in improving the likelihood of achieving therapeutic success while reducing the risks associated with toxicity and antimicrobial resistance. Probenecid has shown significant potential in enhancing the serum exposure of phenoxymethylpenicillin, thereby allowing for lower doses of phenoxymethylpenicillin to achieve similar pharmacokinetic/pharmacodynamic (PK/PD) targets. We developed a triple quadrupole liquid chromatography mass spectrometry (TQ LC/MS) analysis of, phenoxymethylpenicillin, benzylpenicillin and probenecid using benzylpenicillin-d7 and probenecid-d14 as IS in single low-volumes of human serum, with improved limit of quantification to support therapeutic drug monitoring. Methods: Sample clean-up was performed by protein precipitation using acetonitrile. Reverse phase chromatography was performed using TQ LC/MS. The mobile phase consisted of 55% methanol in water + 0.1% formic acid, with a flow rate of 0.4 mL min-1. Antibiotic stability was assessed at different temperatures. Results: Chromatographic separation was achieved within 2 minutes, allowing simultaneous measurement of phenoxymethylpenicillin, benzylpenicillin and probenecid in a single 15 µL blood sample. Validation indicated linearity over the range 0.0015-10 mg L-1, with accuracy of 96-102% and a LLOQ of 0.01 mg L-1. All drugs demonstrated good stability under different storage conditions. Conclusion: The developed method is simple, rapid, accurate and clinically applicable for the quantification of phenoxymethylpenicillin, benzylpenicillin and probenecid in tandem.


Penicillin V , Probenecid , Humans , Probenecid/pharmacology , Tandem Mass Spectrometry/methods , Anti-Bacterial Agents/pharmacology , Penicillin G
5.
Exp Neurol ; 374: 114704, 2024 Apr.
Article En | MEDLINE | ID: mdl-38281587

The clinical manifestation of Parkinson's disease (PD) appears when neurodegeneration is already advanced, compromising the efficacy of disease-modifying treatment approaches. Biomarkers to identify the early stages of PD are therefore of paramount importance for the advancement of the therapy of PD. In the present study, by using a mouse model of PD obtained by subchronic treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the clearance inhibitor probenecid (MPTPp), we identified prodromal markers of PD by combining in vivo positron emission tomography (PET) imaging and ex vivo immunohistochemistry. Longitudinal PET imaging of the dopamine transporter (DAT) by [18F]-N-(3-fluoropropyl)-2ß-carboxymethoxy-3ß-(4-iodophenyl) nortropane ([18F]-FP-CIT), and brain glucose metabolism by 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) were performed before MPTPp treatment and after 1, 3, and 10 MPTPp administrations, in order to assess relation between dopamine neuron integrity and brain connectivity. The results show that in vivo [18F]-FP-CIT in the dorsal striatum was not modified after the first administration of MPTPp, tended to decrease after 3 administrations, and significantly decreased after 10 MPTPp administrations. Post-mortem immunohistochemical analyses of DAT and tyrosine hydroxylase (TH) in the striatum showed a positive correlation with [18F]-FP-CIT, confirming the validity of repeated MPTPp-treated mice as a model that can reproduce the progressive pathological changes in the early phases of PD. Analysis of [18F]-FDG uptake in several brain areas connected to the striatum showed that metabolic connectivity was progressively disrupted, starting from the first MPTPp administration, and that significant connections between cortical and subcortical regions were lost after 10 MPTPp administrations, suggesting an association between dopamine neuron degeneration and connectivity disruption in this PD model. The results of this study provide a relevant model, where new drugs that can alleviate neurodegeneration in PD could be evaluated preclinically.


Parkinson Disease , Tropanes , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Dopamine/metabolism , Probenecid/pharmacology , Probenecid/therapeutic use , Dopaminergic Neurons/pathology , Fluorodeoxyglucose F18/therapeutic use , Dopamine Plasma Membrane Transport Proteins/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Nerve Degeneration/diagnostic imaging , Nerve Degeneration/pathology
6.
J Antimicrob Chemother ; 79(1): 172-178, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-37995258

OBJECTIVES: Antiviral interventions are required to complement vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data to support candidate plausibility are required. This work sought to further investigate the putative antiviral activity of probenecid against SARS-CoV-2. METHODS: Vero E6 cells were preincubated with probenecid, or control media for 2 h before infection (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020). Probenecid or control media was reapplied, plates reincubated and cytopathic activity quantified by spectrophotometry after 48 h. In vitro human airway epithelial cell (HAEC) assays were performed for probenecid against SARS-CoV-2-VoC-B.1.1.7 (hCoV-19/Belgium/rega-12211513/2020; EPI_ISL_791333, 2020-12-21) using an optimized cell model for antiviral testing. Syrian golden hamsters were intranasally inoculated (SARS-CoV-2 Delta B.1.617.2) 24 h prior to treatment with probenecid or vehicle for four twice-daily doses. RESULTS: No observable antiviral activity for probenecid was evident in Vero E6 or HAEC assays. No reduction in total or subgenomic RNA was observed in terminal lung samples (P > 0.05) from hamsters. Body weight of uninfected hamsters remained stable whereas both probenecid- and vehicle-treated infected hamsters lost body weight (P > 0.5). CONCLUSIONS: These data do not support probenecid as a SARS-CoV-2 antiviral drug.


Lung , Probenecid , Cricetinae , Animals , Humans , Mesocricetus , Probenecid/pharmacology , Body Weight , Antiviral Agents/pharmacology
7.
Ann Pharmacother ; 58(3): 286-304, 2024 Mar.
Article En | MEDLINE | ID: mdl-37272472

OBJECTIVE: To describe the use of cidofovir (CDV) for viral infections in immunocompromised children (IC) and provide guidance on dosing and supportive care. DATA SOURCES: A PubMed search was conducted for literature published between 1997 and January 2022 using the following terms: cidofovir, plus children or pediatrics. STUDY SELECTION AND DATA EXTRACTION: Limits were set to include human subjects less than 24 years of age receiving intravenous (IV) or intrabladder CDV for treatment of infections due to adenovirus, polyomavirus-BK (BKV), herpesviruses, or cytomegalovirus. DATA SYNTHESIS: Data were heterogeneous, with largely uncontrolled studies. Conventional dosing (CDV 5 mg/kg/dose weekly) was commonly used in 60% (31/52) of studies and modified dosing (CDV 1 mg/kg/dose 3 times/week) was used in 17% (9/52) of studies, despite being off-label. Nephrotoxicity reported across studies totaled 16% (65/403 patients), which was higher for conventional dosing 29 of 196 patients (15%) than modified dosing 1 of 27 patients (4%). Saline hyperhydration and concomitant probenecid remain the cornerstones of supportive care, while some regimens omitting probenecid are emerging to target BKV. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: To our knowledge, this is the first comprehensive review of CDV use (indications, dosing, supportive care, response, and nephrotoxicity) in pediatric IC. CONCLUSIONS: Effective utilization of CDV in IC remains challenging. Further prospective studies are needed to determine the optimal CDV dosing; however, less aggressive dosing regimens such as modified thrice weekly dosing or low dosing once weekly omitting probenecid to enhance urinary penetration may be reasonable alternatives to conventional dosing in some IC.


Organophosphonates , Virus Diseases , Humans , Child , Cidofovir/adverse effects , Antiviral Agents/therapeutic use , Probenecid , Organophosphonates/therapeutic use , Cytosine/adverse effects , Virus Diseases/drug therapy
8.
Intern Med J ; 54(2): 320-327, 2024 Feb.
Article En | MEDLINE | ID: mdl-37461382

BACKGROUND: Cellulitis is a common acute skin and soft tissue infection that causes substantial morbidity and healthcare costs. AIMS: To audit the impact on cellulitis management, regimen tolerability and outcomes of switching from outpatient parenteral antimicrobial therapy (OPAT) using intravenous (i.v.) cefazolin once daily plus probenecid to oral beta-lactam therapy (OBLT) using oral flucloxacillin plus probenecid. METHODS: We undertook a retrospective audit on cellulitis management, regimen tolerability and outcomes at the Dunedin Public Hospital Emergency Department (ED) before and after a change of the local outpatient cellulitis treatment pathway from OPAT using i.v. cefazolin once daily plus probenecid to OBLT using oral flucloxacillin plus probenecid. RESULTS: OPAT was used in 97/123 (78.9%) patients with cellulitis before compared to 1/70 (1.4%) after the pathway change (odds ratio (OR), 0.04, P < 0.01). OBLT was used in 26/123 (21.1%) patients with cellulitis before and 69/70 (98.6%) after (OR, 218.8, P < 0.01). Antimicrobial change due to intolerance occurred in 4/123 (3.2%) patients with cellulitis before and 4/70 (5.7%) after (OR, 1.8, P, not significant (NS)) the pathway change. Inpatient admission within 28 days occurred in 15/123 (12.2%) cellulitis patients before and 9/70 (12.9%) after (OR, 1.1, P, NS) the pathway change. CONCLUSIONS: Implementation of a change in outpatient cellulitis treatment pathway resulted in a significant change in prescribing practice. Our findings suggest that OBLT was both tolerable and had similar outcomes to OPAT.


Anti-Infective Agents , Cellulitis , Humans , Cellulitis/drug therapy , Anti-Bacterial Agents/therapeutic use , Cefazolin , Floxacillin , Probenecid , Outpatients , Retrospective Studies , Ambulatory Care
9.
Life Sci ; 336: 122286, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38007144

AIMS: Transient receptor potential vanilloid 2 (TRPV2) channels are expressed in both smooth muscle and endothelial cells and participate in vascular mechanotransduction and sensing of high temperatures and lipids. Nevertheless, the impact of TRPV2 channel activation by agonists on the coordinated and cell-type specific modulation of vasoreactivity is unknown. MAIN METHODS: Aorta from 2- to 4-months-old male Oncins France 1 mice was dissected and mounted in tissue baths for isometric tension measurements. TRPV2 channel expression was assessed by immunofluorescence and western blot in mice aortas and in cultured A7r5 rat aortic smooth muscle cells. KEY FINDINGS: TRPV2 channels were expressed in all three mouse aorta layers. Activation of TRPV2 channels with probenecid evoked endothelium-dependent relaxations through a mechanism that involved activation of smooth muscle Kir and Kv channels. In addition, TRPV2 channel inhibition with tranilast increased endothelium-independent relaxations to probenecid and this effect was abrogated by the KATP channel blocker glibenclamide, revealing that smooth muscle TRPV2 channels induce negative feedback on probenecid relaxations mediated via KATP channel inhibition. Exposure to the NO donor sodium nitroprusside increased TRPV2 channel translocation to the plasma membrane in cultured smooth muscle cells and enhanced negative feedback on probenecid relaxations. SIGNIFICANCE: In conclusion, we present the first evidence that TRPV2 channels may modulate vascular tone through a balance of opposed inputs from the endothelium and the smooth muscle leading to net vasodilation. The fact that TRPV2 channel-induced activity can be amplified by NO emphasizes the pathophysiological relevance of these findings.


Endothelial Cells , Probenecid , Mice , Rats , Male , Animals , Probenecid/pharmacology , Mechanotransduction, Cellular , Aorta/metabolism , Vasodilation , Adenosine Triphosphate/metabolism , Endothelium, Vascular/physiology
10.
Inflammopharmacology ; 32(1): 715-731, 2024 Feb.
Article En | MEDLINE | ID: mdl-37994991

Osteoarthritis (OA) is a degenerative joint disease, whereas the underlying molecular trails involved in its pathogenesis are not fully elucidated. Hence, the current study aimed to investigate the role of miRNA-373/P2X7/NLRP3/NF-κB trajectory in its pathogenesis as well as the possible anti-inflammatory effects of probenecid and l-carnitine in ameliorating osteoarthritis via modulating this pathway. In the current study, male Sprague Dawley rats were used and monoiodoacetate (MIA)-induced knee osteoarthritis model was adopted. Probenecid and/or L-carnitine treatments for 14 days succeeded in reducing OA knee size and reestablishing motor coordination and joint mobility assessed by rotarod testing. Moreover, different treatments suppressed the elevated serum levels of IL-1ß, IL-18, IL-6, and TNF-α via tackling the miRNA-373/P2X7/NLRP3/NF-κB, witnessed as reductions in protein expressions of P2X7, NLRP3, cleaved caspase-1 and NF-κB. These were accompanied by increases in procaspase-1 and IκB protein expression and in miRNA-373 gene expression OA knee to various extents. In addition, different regimens reversed the abnormalities observed in the H and E as well as Safranin O-Fast green OA knees stained sections. Probenecid or l-carnitine solely showed comparable results on the aforementioned parameters, whereas the combination therapy had the most prominent effect on ameliorating the aforementioned parameters. In conclusion, l-carnitine augmented the probenecid's anti-inflammatory effect to attenuate MIA-induced osteoarthritis in rats by provoking the miRNA-373 level and inhibiting the P2X7/NLRP3/NF-κB milieu, leading to the suppression of serum inflammatory cytokines: IL-1ß, IL-18, IL-6, and TNF-α. These findings suggest the possibility of using probenecid and l-carnitine as a useful therapeutic option for treatment of osteoarthritis.


Carnitine , MicroRNAs , Osteoarthritis, Knee , Animals , Male , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Interleukin-18 , Interleukin-6 , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteoarthritis, Knee/drug therapy , Probenecid/pharmacology , Probenecid/therapeutic use , Rats, Sprague-Dawley , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Carnitine/pharmacology , Carnitine/therapeutic use
11.
Chem Biol Interact ; 388: 110833, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38101600

Many chemotherapeutic drugs suffer from multidrug resistance (MDR). Efflux transporters, namely ATP-binding cassettes (ABCs), that pump the drugs out of the cancer cells comprise one major reason behind MDR. Therefore, ABC inhibitors have been under development for ages, but unfortunately, without clinical success. In the present study, an l-type amino acid transporter 1 (LAT1)-utilizing derivative of probenecid (PRB) was developed as a cancer cell-targeted efflux inhibitor for P-glycoprotein (P-gp), breast cancer resistant protein (BCRP) and/or several multidrug resistant proteins (MRPs), and its ability to increase vinblastine (VBL) cellular accumulation and apoptosis-inducing effects were explored. The novel amino acid derivative of PRB (2) increased the VBL exposure in triple-negative human breast cancer cells (MDA-MB-231) and human glioma cells (U-87MG) by 10-68 -times and 2-5-times, respectively, but not in estrogen receptor-positive human breast cancer cells (MCF-7). However, the combination therapy had greater cytotoxic effects in MCF-7 compared to MDA-MB-231 cells due to the increased oxidative stress recorded in MCF-7 cells. The metabolomic study also revealed that compound 2, together with VBL, decreased the transport of those amino acids essential for the biosynthesis of endogenous anti-oxidant glutathione (GSH). Moreover, the metabolic differences between the outcomes of the studied breast cancer cell lines were explained by the distinct expression profiles of solute carriers (SLCs) that can be concomitantly inhibited. Therefore, attacking several SLCs simultaneously to change the nutrient environment of cancer cells can serve as an adjuvant therapy to other chemotherapeutics, offering an alternative to ABC inhibitors.


Antineoplastic Agents , Breast Neoplasms , Humans , Female , Vinblastine/pharmacology , Vinblastine/metabolism , Vinblastine/therapeutic use , Probenecid/pharmacology , Probenecid/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Apoptosis , Oxidative Stress , Amino Acids/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor
12.
Viruses ; 15(12)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38140606

Influenza can cause respiratory infections, leading to significant morbidity and mortality in humans. While current influenza vaccines offer varying levels of protection, there remains a pressing need for effective antiviral drugs to supplement vaccine efforts. Currently, the FDA-approved antiviral drugs for influenza include oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These antivirals primarily target the virus, making them vulnerable to drug resistance. In this study, we evaluated the efficacy of the neuraminidase inhibitor, oseltamivir, against probenecid, which targets the host cells and is less likely to engender resistance. Our results show that probenecid has superior antiviral efficacy compared to oseltamivir in both in vitro replication assays and in vivo mouse models of influenza infection.


Influenza Vaccines , Influenza, Human , Humans , Animals , Mice , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Probenecid/pharmacology , Probenecid/therapeutic use , Influenza Vaccines/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Enzyme Inhibitors/pharmacology , Virus Replication , Neuraminidase , Drug Resistance, Viral
13.
Nucleic Acid Ther ; 33(6): 374-380, 2023 Dec.
Article En | MEDLINE | ID: mdl-37967388

Antisense-mediated exon skipping is one of the most promising therapeutic strategies for Duchenne muscular dystrophy (DMD) and some antisense oligonucleotide (ASO) drugs have already been approved by the U.S. FDA for DMD. The potential of this therapy is still limited by several challenges including the poor distribution of ASOs to target tissues. Indeed, most of them accumulate in the kidney and tend to be rapidly eliminated after systemic delivery. We hypothesized here that preventing renal clearance of ASO using organic anion transporter (OAT) inhibitor could increase the bioavailability of ASOs and thus their distribution to target tissues and ultimately their efficacy in muscles. Mdx mice were, therefore, treated with ASO with or without the OAT inhibitor named probenecid. Our findings indicate that OAT inhibition, or at least using probenecid, does not improve the therapeutic potential of ASO-mediated exon-skipping approaches for the treatment of DMD.


Muscular Dystrophy, Duchenne , Organic Anion Transporters , Animals , Mice , Mice, Inbred mdx , Dystrophin/genetics , Probenecid , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/drug therapy , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides , DNA , Exons/genetics
14.
Viruses ; 15(11)2023 Nov 14.
Article En | MEDLINE | ID: mdl-38005930

In the early stages of drug discovery, researchers develop assays that are compatible with high throughput screening (HTS) and structure activity relationship (SAR) measurements. These assays are designed to evaluate the effectiveness of new and known molecular entities, typically targeting specific features within the virus. Drugs that inhibit virus replication by inhibiting a host gene or pathway are often missed because the goal is to identify active antiviral agents against known viral targets. Screening efforts should be sufficiently robust to identify all potential targets regardless of the antiviral mechanism to avoid misleading conclusions.


COVID-19 , Humans , Probenecid/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Discovery , High-Throughput Screening Assays , Virus Replication
15.
Fluids Barriers CNS ; 20(1): 85, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37993886

BACKGROUND: Parenchymal accumulation of beta-amyloid (Aß) characterizes Alzheimer's disease (AD). Aß homeostasis is maintained by two ATP-binding cassette (ABC) transporters (ABCC1 and ABCB1) mediating efflux, and the receptor for advanced glycation end products (RAGE) mediating influx across the blood-brain barrier (BBB). Altered transporter levels and disruption of tight junctions (TJ) were linked to AD. However, Aß transport and the activity of ABCC1, ABCB1 and RAGE as well as the functionality of TJ in AD are unclear. METHODS: ISMICAP, a BBB model involving microperfusion of capillaries, was used to assess BBB properties in acute cortical brain slices from Tg2576 mice compared to wild-type (WT) controls using two-photon microscopy. TJ integrity was tested by vascularly perfusing biocytin-tetramethylrhodamine (TMR) and quantifying its extravascular diffusion as well as the diffusion of FM1-43 from luminal to abluminal membranes of endothelial cells (ECs). To assess ABCC1 and ABCB1 activity, calcein-AM was perfused, which is converted to fluorescent calcein in ECs and gets actively extruded by both transporters. To probe which transporter is involved, probenecid or Elacridar were applied, individually or combined, to block ABCC1 and ABCB1, respectively. To assess RAGE activity, the binding of 5-FAM-tagged Aß by ECs was quantified with or without applying FPS-ZM1, a RAGE antagonist. RESULTS: In Tg2576 mouse brain, extravascular TMR was 1.8-fold that in WT mice, indicating increased paracellular leakage. FM1-43 staining of abluminal membranes in Tg2576 capillaries was 1.7-fold that in WT mice, indicating reduced TJ integrity in AD. While calcein was undetectable in WT mice, its accumulation was significant in Tg2576 mice, suggesting lower calcein extrusion in AD. Incubation with probenecid or Elacridar in WT mice resulted in a marked calcein accumulation, yet probenecid alone had no effect in Tg2576 mice, implying the absence of probenecid-sensitive ABC transporters. In WT mice, Aß accumulated along the luminal membranes, which was undetectable after applying FPS-ZM1. In contrast, marginal Aß fluorescence was observed in Tg2576 vessels, and FPS-ZM1 was without effect, suggesting reduced RAGE binding activity. CONCLUSIONS: Disrupted TJ integrity, reduced ABCC1 functionality and decreased RAGE binding were identified as BBB alterations in Tg2576 mice, with the latter finding challenging the current concepts. Our results suggest to manage AD by including modulation of TJ proteins and Aß-RAGE binding.


Alzheimer Disease , Blood-Brain Barrier , Mice , Animals , Blood-Brain Barrier/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Capillaries/metabolism , Endothelial Cells/metabolism , Probenecid/metabolism , Homeostasis , Perfusion
16.
Biochem Pharmacol ; 218: 115867, 2023 12.
Article En | MEDLINE | ID: mdl-37866801

Transporter-mediated drug-drug interactions (DDIs) are assessed using probe drugs and in vitro and in vivo models during drug development. The utility of endogenous metabolites as transporter biomarkers is emerging for prediction of DDIs during early phases of clinical trials. Endogenous metabolites such as pyridoxic acid and kynurenic acid have shown potential to predict DDIs mediated by organic anion transporters (OAT1 and OAT3). However, these metabolites have not been assessed in rats as potential transporter biomarkers. We carried out a rat pharmacokinetic DDI study using probenecid and furosemide as OAT inhibitor and substrate, respectively. Probenecid administration led to a 3.8-fold increase in the blood concentrations and a 3-fold decrease in renal clearance of furosemide. High inter-individual and intra-day variability in pyridoxic acid and kynurenic acid, and no or moderate effect of probenecid administration on these metabolites suggest their limited utility for prediction of Oat-mediated DDI in rats. Therefore, rat blood and urine samples were further analysed using untargeted metabolomics. Twenty-one m/z features (out of >8000 detected features) were identified as putative biomarkers of rat Oat1 and Oat3 using a robust biomarker qualification approach. These m/z features belong to metabolic pathways such as fatty acid analogues, peptides, prostaglandin analogues, bile acid derivatives, flavonoids, phytoconstituents, and steroids, and can be used as a panel to decrease variability caused by processes other than Oats. When validated, these putative biomarkers will be useful in predicting DDIs caused by Oats in rats.


Organic Anion Transporters , Rats , Animals , Organic Anion Transporters/metabolism , Probenecid/pharmacology , Probenecid/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Renal Elimination , Furosemide/pharmacology , Furosemide/metabolism , Organic Anion Transport Protein 1/metabolism , Kynurenic Acid/metabolism , Kynurenic Acid/pharmacology , Pyridoxic Acid/metabolism , Pyridoxic Acid/pharmacology , Drug Interactions , Biomarkers/metabolism , Kidney/metabolism
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(8): 1268-1278, 2023 Aug 20.
Article Zh | MEDLINE | ID: mdl-37712262

OBJECTIVE: To investigate the effect of 8-week dihydromyricetin (DHM) treatment on motor ability of mice with MPTP/probenecid-induced Parkinson's disease (PD) and explore the molecular mechanism. METHODS: Sixty C57BL/6 mice were randomized into the control group, PD model group, PD+DHM group and PD+NEC-1 group (n=15). In the latter 3 groups, the mice were treated with 25 mg·kg-1·d-1 MPTP and 250 mg·kg-1·d-1 probenecid twice a week for 5 weeks to establish PD models; DHM (100 mg·kg-1·d-1) was administered 5 times a week via gavage for 8 weeks and NEC-1 (6.25 mg·kg-1·d-1, twice a week) via intraperitoneal injection for 5 weeks. The changes in motor function of the mice were assessed, and the expressions of TH, GFAP and Iba-1 in the substantia nigra were detected with immunofluorescence assay; serum levels of IL-1ß and LDH were detected using ELISA. The mRNA expressions of TNF-α and IL-6 were determined with RT-PCR, and the expressions of TH and proteins associated with pyroptosis, neuroinflammation, necroptosis and autophagy in the striatum were detected using Western blotting. MPP +-activated Bv-2 cells were treated with different concentrations of DHM or 3-MA, and the expressions of proteins associated with autophagy and NLRP3 were detected using Western blotting; PI staining was used to detect cell necroptosis. RESULTS: The PD mouse models showed significantly reduced TH-positive cells and TH protein expression (P < 0.001). DHM obviously ameliorated motor deficits and TH loss in PD mice, increased TH expression (P=0.0023), decreased α-syn levels (P < 0.001), lowered the protein expressions of GFAP (P=0.045) and Iba-1 (P < 0.001) and the mRNA and protein levels of TNF-α (P=0.0015) and IL-6 (P < 0.001), and increased IL-4 level (P < 0.001). The 8-week DHM treatment significantly suppressed pyroptosis and necroptosis and activated autophagy in the striatum of the PD mice. In MPP +-induced Bv-2 cells, DHM treatment effectively reversed autophagy impairment and inhibited NLRP3 and TNF-α, IL-6 and IL-1ß release, and the anti--inflammatory effects of DHM was obviously blunted by 3-MA. CONCLUSION: DHM can improve motor function of PD mice probably by activating autophagy to inhibit pyroptosis and necroptosis and reduce neuroinflammation.


Interleukin-6 , Parkinson Disease , Animals , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Necroptosis , Neuroinflammatory Diseases , Probenecid , Pyroptosis , Tumor Necrosis Factor-alpha , Autophagy
18.
Neurotherapeutics ; 20(6): 1529-1537, 2023 Oct.
Article En | MEDLINE | ID: mdl-37596428

N-Acetylcysteine (NAC) has shown promise as a putative neurotherapeutic for traumatic brain injury (TBI). Yet, many such promising compounds have limited ability to cross the blood-brain barrier (BBB), achieve therapeutic concentrations in brain, demonstrate target engagement, among other things, that have hampered successful translation. A pharmacologic strategy for overcoming poor BBB permeability and/or efflux out of the brain of organic acid-based, small molecule therapeutics such as NAC is co-administration with a targeted or nonselective membrane transporter inhibitor. Probenecid is a classic ATP-binding cassette and solute carrier inhibitor that blocks transport of organic acids, including NAC. Accordingly, combination therapy using probenecid as an adjuvant with NAC represents a logical neurotherapeutic strategy for treatment of TBI (and other CNS diseases). We have completed a proof-of-concept pilot study using this drug combination in children with severe TBI-the Pro-NAC Trial (ClinicalTrials.gov NCT01322009). In this review, we will discuss the background and rationale for combination therapy with probenecid and NAC in TBI, providing justification for further clinical investigation.


Brain Injuries, Traumatic , Probenecid , Child , Humans , Probenecid/therapeutic use , Probenecid/pharmacology , Acetylcysteine/therapeutic use , Acetylcysteine/pharmacology , Pilot Projects , Brain Injuries, Traumatic/drug therapy , Brain , Blood-Brain Barrier
19.
Clin Pharmacol Ther ; 114(6): 1243-1253, 2023 12.
Article En | MEDLINE | ID: mdl-37620246

Monitoring endogenous biomarkers is increasingly used to evaluate transporter-mediated drug-drug interactions (DDIs) in early drug development and may be applied to elucidate changes in transporter activity in disease. 4-pyridoxic acid (PDA) has been identified as the most sensitive plasma endogenous biomarker of renal organic anion transporters (OAT1/3). Increase in PDA baseline concentrations was observed after administration of probenecid, a strong clinical inhibitor of OAT1/3 and also in patients with chronic kidney disease (CKD). The aim of this study was to develop and verify a physiologically-based pharmacokinetic (PBPK) model of PDA, to predict the magnitude of probenecid DDI and predict the CKD-related changes in PDA baseline. The PBPK model for PDA was first developed in healthy population, building on from previous population pharmacokinetic modeling, and incorporating a mechanistic kidney model to consider OAT1/3-mediated renal secretion. Probenecid PBPK model was adapted from the Simcyp database and re-verified to capture its dose-dependent pharmacokinetics (n = 9 studies). The PBPK model successfully predicted the PDA plasma concentrations, area under the curve, and renal clearance in healthy subjects at baseline and after single/multiple probenecid doses. Prospective simulations in severe CKD predicted successfully the increase in PDA plasma concentration relative to healthy (within 2-fold of observed data) after accounting for 60% increase in fraction unbound in plasma and additional 50% decline in OAT1/3 activity beyond the decrease in glomerular filtration rate. The verified PDA PBPK model supports future robust evaluation of OAT1/3 DDI in drug development and increases our confidence in predicting exposure and renal secretion in patients with CKD.


Pyridoxic Acid , Renal Insufficiency, Chronic , Humans , Probenecid/pharmacology , Renal Insufficiency, Chronic/drug therapy , Kidney , Drug Interactions , Biomarkers , Models, Biological
20.
J Pharm Biomed Anal ; 235: 115635, 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37634358

Furosemide (FUR) has been used in probe drugs cocktails for in vivo evaluation of the renal transporters OAT1 and OAT3 activities in studies of drug-drug interactions (generally using probenecid as an inhibitor) and drug-disease interactions. The objective of this study was to develop and validate methods for FUR and its glucuronide metabolite (FUR-GLU) analysis in plasma, plasma ultrafiltrate and urine for application in pharmacokinetics studies: a pilot drug-drug interaction study in pregnant women (n = 2), who received a single oral dose of FUR (40 mg) and in another occasion a single oral dose of probenecid (750 mg) before a single oral dose of FUR (40 mg), and in non-pregnant women participants (n = 12), who only received a single oral dose of FUR (40 mg). The samples preparation for FUR in 50 µL of plasma and plasma lysate were carried by acidified liquid-liquid extraction, while 50 µL of urine and 200 µL of plasma ultrafiltrate were simply diluted with the mobile phase. The methods presented linearities in the range of 0.50 - 2500 ng/mL of plasma and plasma lysate, 0.125 - 250 ng/mL of plasma ultrafiltrate, and 50 - 20,000 ng/mL of urine. FUR-GLU methods presented linearities in the range of 0.125 - 250 ng/mL of plasma ultrafiltrate and 50 - 20,000 ng/mL of urine. Precision and accuracy evaluations showed coefficients of variation and relative errors < 15%. In the pregnant women participants, the mean values of FUR CLrenal, CLsecretion, CLformation. FUR-GLU and CLnon-renal were all reduced when probenecid was administered with FUR (8.24 vs 2.89 L/h, 8.15 vs 2.80 L/h, 3.86 vs 1.75 L/h, 48.26 vs 22.10 L/h, respectively). Non-pregnant women presented similar values of FUR CLrenal, CLsecretion, CLformation. FUR-GLU to the pregnant women who received FUR only. Finally, FUR fraction unbound (fu) resulted in values of approximately 1% in pregnant women and to 0.22% in non-pregnant women. These developed and validated methods for FUR and FUR-GLU quantification in multiple matrices can allow the further investigation of UGT1A9/1A1 and the fu when FUR is administered as an OAT 1 and 3 in vivo probe.


Furosemide , Glucuronides , Female , Humans , Chromatography, High Pressure Liquid , Probenecid , Tandem Mass Spectrometry
...